Determination of crop rows by image analysis without segmentation

نویسنده

  • H. T. Søgaard
چکیده

A method based on computer vision for detection and localisation of crop rows, especially of small-grain crops, is described. The method is intended for use in a system for automatic guidance of agricultural implements in selective treatment of rows and/or inter-row spaces, e.g. with an inter-row cultivator. The computer vision system consists of a colour video camera and a computer. The camera is focussed on the field surface from an inclined angle to obtain images that cover up to about five rows simultaneously. New images are continuously transferred to the computer, which processes them and calculates the necessary lateral movements of the implement. The processing method does not include a segmentation step, which is found in most other methods for plant detection. The segmentation step has been replaced by computation of centres of gravity for row segments in the image. This approach has proven to reduce the computational burden of the image processing software. The estimation of the orientation and the lateral position of the centre lines of the rows is accomplished by weighted linear regression. The accuracy of the estimation was determined by comparing the calculated row centre line with the position of a reference string, which was placed parallel to the row along the centre line of an adjacent inter-row space. # 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Automatic detection of crop rows in maize fields with high weeds pressure

This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of thre...

متن کامل

Persian Printed Document Analysis and Page Segmentation

This paper presents, a hybrid method, low-resolution and high-resolution, for Persian page segmentation. In the low-resolution page segmentation, a pyramidal image structure is constructed for multiscale analysis and segments document image to a set of regions. By high-resolution page segmentation, by connected components analysis, each region is segmented to homogeneous regions and identifyi...

متن کامل

Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination

An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and dete...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003